Border-Block Triangular Form and Conjunction Schedule in Image Computation
نویسندگان
چکیده
Conjunction scheduling in image computation consists of clustering the parts of a transition relation and ordering the clusters, so that the size of the BDDs for the intermediate results of image computation stay small. We present an approach based on the analysis and permutation of the dependence matrix of the transition relation. Our algorithm computes a bordered-block lower triangular form of the matrix that heuristically minimizes the active lifetime of variables, that is, the number of conjunctions in which the variables participate. The ordering procedure guides a clustering algorithm based on the affinity of the transition relation parts. The ordering procedure is then applied again to define the cluster conjunction schedule. Our experimental results show the effectiveness of the new algorithm.
منابع مشابه
Modular Partitioning and Dynamic Conjunction Scheduling in Image Computation
Image computation is the core task in any formal verification applications like reachable states computation or model checking. In OBDD-based image computation a partitioned representation of the transition relation is used. The quality of the partitioning and the schedule in which the partitions are processed is crucial for the efficiency of the image computation. In this paper we describe an ...
متن کاملLazy Householder Decomposition of Sparse Matrices
This paper describes Householder reduction of a rectangular sparse matrix to small band upper triangular form Bk+1. Bk+1 is upper triangular with nonzero entries only on the diagonal and on the nearest k superdiagonals. The algorithm is similar to the Householder reduction used as part of the standard dense SVD computation. For the sparse “lazy” algorithm, matrix updates are deferred until a ro...
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملUBk+1V Block Sparse Householder Decomposition
This paper describes Householder reduction of a rectangular sparse matrix to small band upper triangular form. Using block Householder transformations gives good orthogonality, is computationally efficient, and has good potential for parallelization. The algorithm is similar to the standard dense Householder reduction used as part of the usual dense SVD computation. For the sparse algorithm, th...
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000